CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Special Polynomials Related to the Supersymmetric Eight-Vertex Model: A Summary

Hjalmar Rosengren (Institutionen för matematiska vetenskaper, matematik)
Communications in Mathematical Physics (0010-3616). Vol. 340 (2015), 3, p. 1143-1170.
[Artikel, refereegranskad vetenskaplig]

We introduce and study symmetric polynomials, which as very special cases include polynomials related to the supersymmetric eight-vertex model, and other elliptic lattice models with $${\Delta=\pm 1/2}$$Δ=±1/2. There is also a close relation to affine Lie algebra characters. After a natural change of variables, our polynomials satisfy a non-stationary Schrödinger equation with elliptic potential, which is related to the Knizhnik–Zamolodchikov–Bernard equation and to the canonical quantization of Painlevé VI. Moreover, specializations of our polynomials can be identified with tau functions of Painlevé VI, obtained from one of Picard’s algebraic solutions by acting with a four-dimensional lattice of Bäcklund transformations. In the present work, our results on these topics are summarized with a minimum of technical details.

Denna post skapades 2015-10-26. Senast ändrad 2015-11-09.
CPL Pubid: 224794


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur