CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Weighted bounds for multilinear operators with non-smooth kernels

Anh Bui ; Jose Conde-Alonso ; Xuan Thinh Duong ; Mahdi Hormozi (Institutionen för matematiska vetenskaper)

Let $T$ be a multilinear {integral} operator which is bounded on certain products of Lebesgue spaces on $\mathbb R^n$. We assume that its associated kernel satisfies some mild regularity condition which is weaker than the usual H\"older continuity of those in the class of multilinear Calder\'on-Zygmund singular integral operators. In this paper, given a suitable multiple weight $\vec{w}$, we obtain the bound for the weighted norm of multilinear operators $T$ in terms of $\vec{w}$. As applications, we exploit this result to obtain the weighted bounds {for} certain singular integral operators such as linear and multilinear Fourier multipliers and the Riesz transforms associated to Schr\"odinger operators on $\mathbb{R}^n$ and these results are new in the literature

Nyckelord: Multilinear singular integrals, weighted norm inequaliti es, Lerner’s formual, multilinear Fourier multipliers

Denna post skapades 2015-10-23.
CPL Pubid: 224678


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)


Matematisk analys

Chalmers infrastruktur