CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Cooling hot spots by hexagonal boron nitride heat spreaders

Shuangxi Sun (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; J. Bao ; Wei Mu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Y. Fu ; Yong Zhang (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; L. Ye ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
2015 65th IEEE Electronic Components and Technology Conference, ECTC 2015, San Diego, United States, 26-29 May 2015 (0569-5503). p. 1658-1663. (2015)
[Konferensbidrag, refereegranskat]

As the electronic systems become smaller and faster, a thinner and higher-efficiency heat spreader is demanded to meet the thermal dissipation requirement. In this work, we proposed a layered hBN film based heat spreader to dissipate the thermal energy generated by hot spots on high power chips. The liquid phase exfoliation method was employed to synthesize hBN flakes. Different layers of hBN film were characterized using SEM, TEM and Raman spectroscopy. Afterwards, the films were directly attached onto the target power chips. The power chips were integrated with temperature sensor and hot spot in order to analyze the thermal performance of the hBN heat spreader. IR Camera was used to capture the heat spreading effect of the hBN heat spreader and monitor the temperature distribution around the hot spot. The temperature at the hot spot driven by a heat flux of around 600W/cm2 was decreased by about 20% compared to the sample without the BN film. The potential of using hBN heat spreader for cooling hot spots was demonstrated in this work.

Article number 7159819

Denna post skapades 2015-10-15. Senast ändrad 2016-03-23.
CPL Pubid: 224304


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Elektroteknik och elektronik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Carbon Based Materials Synthesis and Characterization for 3D Integrated Electronics