CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the Capacity of the Wiener Phase Noise Channel: Bounds and Capacity Achieving Distributions

Mohammad Reza Khanzadi (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik ; Institutionen för signaler och system, Kommunikationssystem) ; Rajet Krishnan (Institutionen för signaler och system, Kommunikationssystem) ; Johan Söder ; Thomas Eriksson (Institutionen för signaler och system, Kommunikationssystem)
IEEE Transactions on Communications (0090-6778). Vol. 63 (2015), 11, p. 4174-4184.
[Artikel, refereegranskad vetenskaplig]

In this paper, the capacity of the additive white Gaussian noise (AWGN) channel, affected by time-varying Wiener phase noise is investigated. Tight upper and lower bounds on the capacity of this channel are developed. The upper bound is obtained by using the duality approach, and considering a specific distribution over the output of the channel. In order to lower-bound the capacity, first a family of capacity-achieving input distributions is found by solving a functional optimization of the channel mutual information. Then, lower bounds on the capacity are obtained by drawing samples from the proposed distributions through Monte-Carlo simulations. The proposed capacity-achieving input distributions are circularly symmetric, non-Gaussian, and the input amplitudes are correlated over time. The evaluated capacity bounds are tight for a wide range of signal-to-noise-ratio (SNR) values, and thus they can be used to quantify the capacity. Specifically, the bounds follow the well-known AWGN capacity curve at low SNR, while at high SNR, they coincide with the high-SNR capacity result available in the literature for the phase-noise channel.

Nyckelord: Phase noise, channel capacity, capacity achieving distribution, Wiener process



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-10-13. Senast ändrad 2016-06-27.
CPL Pubid: 224139

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)