CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Factors affecting the viability of Saccharomyces cerevisiae in Simultaneous Saccharification and co-Fermentation of pretreated wheat straw to ethanol

Johan Westman (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Ruifei Wang (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Vera Novy ; Lisbeth Olsson (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Carl Johan Franzén (Institutionen för biologi och bioteknik, Industriell bioteknik)
32nd International Specialized Symposium on Yeasts (2015)
[Konferensbidrag, poster]

The recalcitrance of lignocellulosic materials makes economic production of second generation ethanol difficult and necessitates pretreatment prior to hydrolysis and fermentation. Dilution in these steps limits the final ethanol titre reached in the fermentation, even at high yields. A higher concentration of the raw material already in the hydrolysis step is thus required to obtain good process economy. However, this also increases the amount of toxic compounds in the fermentation. Through simultaneous saccharification and co-fermentation, SSCF, with feeding of pretreated solids, higher substrate concentrations can be reached (Wang et al 2014). Yeast cells can be adapted to the material if they are propagated in fed-batch cultivation on a medium containing the liquid fraction from the pretreatment. Yet, even with such preadaptation, the activity of the cells added to our SSCF process dropped over time. To overcome this issue, we added fresh cells to the SSCF at different time points. We observed that the viability and fermentation capacity of the cells still decreased during the process. Nutrient supplementation could not help in improving the dropping viability. However, by adding ethanol to shake flask SSCF experiments we could see that the ethanol produced in the process was likely a contributing factor to the low viability. Drop tests on agar plates containing ethanol and/or pretreatment liquor, incubated at both 30°C and 35°C, further indicated that the decreased viability was an effect of the combination of the temperature in the reactor, the inhibitors in the material, and the ethanol produced in the process. Decreasing the temperature in the reactor to 30°C when the ethanol concentration reached 40-50 g L-1 resulted in rapid initial hydrolysis and maintained fermentation capacity. The residual amount of unfermented glucose and xylose at the end of the process was reduced. With the optimized process, ethanol concentrations of more than 60 g L-1 were reached. REFERENCE: Wang R, Koppram R, Olsson L, Franzén CJ (2014) Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol. Bioresour Technol 172:303–311

Nyckelord: Bioethanol, SSCF, Ethanol tolerance, Thermotolerance, Inhibitors

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-09-30.
CPL Pubid: 223458