CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Static solutions to the Einstein-Vlasov system with a nonvanishing cosmological constant

Håkan Andréasson (Institutionen för matematiska vetenskaper, matematik) ; D. Fajman ; Maximilian Thaller (Institutionen för matematiska vetenskaper)
SIAM Journal on Mathematical Analysis (0036-1410). Vol. 47 (2015), 4, p. 2657-2688.
[Artikel, refereegranskad vetenskaplig]

We construct spherically symmetric static solutions to the Einstein-Vlasov system with nonvanishing cosmological constant Λ. The results are divided as follows. For small Λ > 0 we show the existence of globally regular solutions which coincide with the Schwarzschild-deSitter solution in the exterior of the matter regions. For Λ < 0 we show via an energy estimate the existence of globally regular solutions which coincide with the Schwarzschild-anti-deSitter solution in the exterior vacuum region. We also construct solutions with a Schwarzschild singularity at the center regardless of the sign of Λ. For all solutions considered, the energy density and the pressure components have bounded support. Finally, we point out a straightforward method for obtaining a large class of global, nonvacuum spacetimes with topologies ℝ × S3 and ℝ × S2 × ℝ which arise from our solutions as a result of using the periodicity of the Schwarzschild-deSitter solution. A subclass of these solutions contains black holes of different masses.

Nyckelord: Black holes , Einstein equations , Einstein-Vlasov system , Schwarzschild-anti-deSitter , Schwarzschild-deSitter , Static solutions



Denna post skapades 2015-09-18. Senast ändrad 2016-07-14.
CPL Pubid: 222778

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematik
Rymdfysik

Chalmers infrastruktur