CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Oral administration of methylphenidate blocks the effect of cocaine on uptake at the Drosophila dopamine transporter.

E Carina Berglund ; Monique A Makos ; Jacqueline Keighron (Institutionen för kemi- och bioteknik, Analytisk kemi) ; Nhu TN Phan ; Michael L Heien ; Andrew G Ewing
ACS chemical neuroscience (1948-7193). Vol. 4 (2013), 4, p. 566-74.
[Artikel, refereegranskad vetenskaplig]

Although our understanding of the actions of cocaine in the brain has improved, an effective drug treatment for cocaine addiction has yet to be found. Methylphenidate binds the dopamine transporter and increases extracellular dopamine levels in mammalian central nervous systems similar to cocaine, but it is thought to elicit fewer addictive and reinforcing effects owing to slower pharmacokinetics for different routes of administration between the drugs. This study utilizes the fruit fly model system to quantify the effects of oral methylphenidate on dopamine uptake during direct cocaine exposure to the fly CNS. The effect of methylphenidate on the dopamine transporter has been explored by measuring the uptake of exogenously applied dopamine. The data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter and the inhibition is concentration dependent. The peak height increased to 150% of control when cocaine was used to block the dopamine transporter for untreated flies but only to 110% for methylphenidate-treated flies. Thus, the dopamine transporter is mostly inhibited for the methylphenidate-fed flies before the addition of cocaine. The same is true for the rate of the clearance of dopamine measured by amperometry. For untreated flies the rate of clearance changes 40% when the dopamine transporter is inhibited with cocaine, and for treated flies the rate changes only 10%. The results were correlated to the in vivo concentration of methylphenidate determined by CE-MS. Our data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter for cocaine uptake, and the inhibition is concentration dependent.

Nyckelord: Administration, Oral, Animals, Animals, Genetically Modified, Cocaine, antagonists & inhibitors, metabolism, Dopamine Plasma Membrane Transport Proteins, antagonists & inhibitors, metabolism, Dose-Response Relationship, Drug, Drosophila melanogaster, Male, Methylphenidate, administration & dosage



Denna post skapades 2015-09-16. Senast ändrad 2016-08-22.
CPL Pubid: 222546

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi och molekylärbiologi (GU)
Institutionen för kemi- och bioteknik, Analytisk kemi (2006-2014)

Ämnesområden

Kemi

Chalmers infrastruktur