CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

Ulrik Larsen (Institutionen för sjöfart och marin teknik) ; Tuong-Van Nguyen ; T. Knudsen ; F. Haglind
Energy (0360-5442). Vol. 64 (2014),
[Artikel, refereegranskad vetenskaplig]

Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation process in order to improve the match between the heat source and working fluid temperatures. We present a system analysis to identify the governing mechanisms of the process, including a comparison of the efficiency of the Split-cycle and a conventional Kalina cycle and an investigation of the effects of using reheat in both cases. Results of a multi-variable optimisation effort using a genetic algorithm suggest that the Split-cycle process can obtain a thermal efficiency of 23.2% when using reheat compared to 20.8% for a conventional reference Kalina cycle. Reheat can increase the thermal efficiency by 3.4-5.9%. A simplified cost analysis suggests higher purchase costs as result of increased process complexity.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-09-15.
CPL Pubid: 222536


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för sjöfart och marin teknik


Hållbar utveckling
Termisk energiteknik

Chalmers infrastruktur