CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

High Temperature Tread Braking Simulations Employing Advanced Modelling of Wheel Materials

Ali Esmaeili (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Tore Vernersson (Institutionen för tillämpad mekanik, Dynamik) ; Dimitrios Nikas (Institutionen för material- och tillverkningsteknik, Materialteknologi) ; Magnus Ekh (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
IHHA 2015,Perth,Australia (2015)
[Konferensbidrag, refereegranskat]

In this contribution, the mechanical behaviour of a near pearlitic wheel steel of type ER7 is studied. Isothermal experiments of cyclic loading combined with a hold time are performed at several temperatures, ranging from room temperature up to elevated (below austenitization) temperatures. The experiments show a viscous behaviour at temperatures above 300°C. To capture the cyclic hardening/softening and viscous behaviour of the material, a Chaboche model of viscoplastic type is presented and calibrated against the experimental data. The robustness and uniqueness of the obtained material parameters are then ensured by employing sensitivity and correlation analyses. The main goal of this study is to improve the modelling of wheel materials subjected to thermal loading due to tread braking and also to highlight the importance of viscoplastic material modelling. In this regard, finite element analyses of generic heavy haul wheels, subjected to high power drag braking loads, are carried out and comparisons between analyses with plastic and viscoplastic material models are shown. Results are presented for simulated global wheel behaviour, i.e. axial rim displacements during and after braking, and also residual stresses after braking. A conclusion is that the obtained results for a generic wheel with an S-shaped web, which builds substantial stresses in the wheel rim during braking, is rather sensitive to the choice of material model. Substantial differences are found already at 400°C. Moreover, the results indicate that a generic Low-stress wheel, which builds less stresses in the rim during braking, is less affected by the choice of material model. However, at temperatures higher than about 500°C also the results for this wheel are significantly affected by the choice of material model.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-09-15. Senast ändrad 2017-10-03.
CPL Pubid: 222484


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)
Institutionen för tillämpad mekanik, Dynamik (1900-2017)
Institutionen för material- och tillverkningsteknik, Materialteknologi (2005-2017)


Hållbar utveckling
Teknisk mekanik

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)

Relaterade publikationer

Denna publikation ingår i:

Modelling of cyclic and viscous behaviour of pearlitic steels. Application to tread braked railway wheels.