CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector

S. Jain ; V. Depauw ; Vladimir D. Miljkovic (Institutionen för teknisk fysik, Bionanofotonik) ; Alexandre Dmitriev (Institutionen för teknisk fysik, Bionanofotonik) ; C. Trompoukis ; I. Gordon ; P. Van Dorpe ; O. El Daif
Progress in Photovoltaics (1062-7995). Vol. 23 (2015), 9, p. 1144-1156.
[Artikel, refereegranskad vetenskaplig]

We propose a back reflecting scheme in order to enhance the maximum achievable current in one micron thick crystalline silicon solar cells. We perform 3D numerical investigations of the scattering properties of metallic nanostructures located at the back side and optimize them for enhancing absorption in the silicon layer. We validate our numerical results experimentally and also compare the absorption enhancement in the solar cell structure, both with quasi-periodic and random metallic nanostructures. We have looked at the interplay between the metallic nanostructures and an integrated back reflector. We show that the combination of metallic nanoparticles and a metallic reflector results in significant parasitic absorption. We compared this to another implementation based on titanium dioxide nanoparticles, which act as a Lambertian reflector of light. Our simulation and experimental results show that this proposed configuration results in reduced absorption losses and in broadband enhancement of absorption for ultra-thin solar cells, paving the way to an optimal back reflector for thin film photovoltaics.

Nyckelord: plasmons, solar cells, optics, crystalline silicon, nanoparticles

Denna post skapades 2015-09-15. Senast ändrad 2016-01-28.
CPL Pubid: 222457


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)


Metallurgi och metalliska material

Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Plasmon resonance for improving the absorption of solar cells (PRIMA) (EC/FP7/248154)