CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem

Andre Massing ; Mats G. Larson ; Anders Logg (Institutionen för matematiska vetenskaper, matematik) ; Marie E. Rognes
Communications in Applied Mathematics and Computational Science (1559-3940). Vol. 10 (2015), 2, p. 97-120.
[Artikel, refereegranskad vetenskaplig]

We present a new composite mesh finite element method for fluid-structure interaction problems. The method is based on surrounding the structure by a boundary-fitted fluid mesh that is embedded into a fixed background fluid mesh. The embedding allows for an arbitrary overlap of the fluid meshes. The coupling between the embedded and background fluid meshes is enforced using a stabilized Nitsche formulation that allows us to establish stability and optimal-order a priori error estimates. We consider here a steady state fluid-structure interaction problem where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes equations. We evaluate an iterative solution procedure based on splitting and present three-dimensional numerical examples.

Nyckelord: fluid-structure interaction, overlapping meshes, cut finite element method, embedded meshes, stabilized finite element methods, Nitsche's method

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-09-09. Senast ändrad 2015-11-18.
CPL Pubid: 222107


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Building Futures

Chalmers infrastruktur