CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Triply resonant coherent four-wave mixing in silicon nitride microresonators

Attila Fülöp (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Clemens Krückel (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; David Castelló-Lurbe ; Enrique Silvestre ; Victor Torres Company (Institutionen för mikroteknologi och nanovetenskap, Fotonik)
Optics Letters (0146-9592). Vol. 40 (2015), 17, p. 4006-4009.
[Artikel, refereegranskad vetenskaplig]

The generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depends on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but it has never been studied in integrated microresonators. Waveguides arranged in a resonant way allow for an effective increase in the wavelength conversion efficiency (at the expense of a reduction in the operational bandwidth). In this letter, we show that phase shaping of a three-wave pump provides an extra degree of freedom for controlling the FWM dynamics in microresonators. We present experimental results in single-mode, normal-dispersion high-Q silicon nitride resonators, and numerical calculations of systems operating in the anomalous dispersion regime. Our results indicate that the wavelength conversion efficiency and modulation instability gain in microcavities pumped by multiple waves can be significantly modified with the aid of simple lossless coherent control techniques.



Denna post skapades 2015-08-26. Senast ändrad 2016-01-28.
CPL Pubid: 221226

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)




Projekt

Denna publikation är ett resultat av följande projekt:


Phase-sensitive optical parametric amplifiers (PSOPA) (EC/FP7/291618)