CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Improved Heat Spreading Performance of Functionalized Graphene in Microelectronic Device Application

Yong Zhang (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; H. X. Han ; Nan Wang (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Pengtu Zhang (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Y. F. Fu ; Murali Murugesan (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Michael Edwards (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Kjell Jeppson (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; S. Volz ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Advanced Functional Materials (1616-301X). Vol. 25 (2015), 28, p. 4430-4435.
[Artikel, refereegranskad vetenskaplig]

It is demonstrated that a graphene-based film (GBF) functionalized with silane molecules strongly enhances thermal performance. The resistance temperature detector results show that the inclusion of silane molecules doubles the heat spreading ability. Furthermore, molecular dynamics simulations show that the thermal conductivity () of the GBF increased by 15%-56% with respect to the number density of molecules compared to that with the nonfunctionalized graphene substrate. This increase in is attributed to the enhanced in-plane heat conduction of the GBF, resulting from the simultaneous increase of the thermal resistance between the GBF and the functionalized substrate limiting cross-plane phonon scattering. Enhancement of the thermal performance by inserting silane-functionalized molecules is important for the development of next-generation electronic devices and proposed application of GBFs for thermal management.

Nyckelord: graphene, heat spreaders, hotspots, molecular dynamics, phonon transport, THERMAL-CONDUCTIVITY, LAYER GRAPHENE, MANAGEMENT, FILMS, OXIDE, DISSIPATION, RELIABILITY, TRANSPORT, CIRCUITS, SINK



Denna post skapades 2015-08-25. Senast ändrad 2017-01-27.
CPL Pubid: 221140

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)

Ämnesområden

Nanoteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Functionalization and Characteization of Carbon-based Nanomaterials


Functionalization and Characterization of Carbon Based Nanomaterials for Electronics, Composite and Biomedical Applications