CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

pH-shift processing of Nannochloropsis oculata microalgal biomass to obtain a protein-enriched food or feed ingredient

Lillie Cavonius (Institutionen för biologi och bioteknik, Livsmedelsvetenskap) ; Eva Albers (Institutionen för biologi och bioteknik, Livsmedelsvetenskap) ; Ingrid Undeland (Institutionen för biologi och bioteknik, Livsmedelsvetenskap)
Algal Research (2211-9264). Vol. 11 (2015), p. 95-102.
[Artikel, refereegranskad vetenskaplig]

Fractionation of plant and animal raw materials by pH-shift processing has been widely applied to purify proteins. The principle is to solubilize proteins at high or low pH, removing debris and precipitating the proteins near their isoelectric point. We here describe the pH-shift process on commercially available Nannochloropsis oculata. The partitioning of major nutrients into the various fractions of the process was studied. Proteins were found to exhibit maximal solubility between pH 7 and 10, with a minimal solubility below pH 4. Two process versions were investigated in this study, with solubilization at either pH 7 (native pH) or 10; both versions were precipitated at pH 3. Up to 85% of both the protein and total fatty acids were recovered in the final product, compared to the initial algal slurry. Protein, total fatty acids and carbohydrates were concentrated in the final product, while the ash content was lower compared to the starting material. From a processing point of view, solubilization of Nannochloropsis at native pH was found to be preferable, since less chemicals were consumed compared to high-pH solubilization. Owing to its content of protein and (total) fatty acids (23 and 12% of dry weight, respectively), the latter enriched in eicosapentaenoic acid (EPA), the product of the pH-shift process has potential as a functional food ingredient.

Nyckelord: Microalgae; Nannochloropsis; Food; Acid/alkaline solubilization and precipitation; Protein; n-3 fatty acids



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-08-19. Senast ändrad 2016-01-12.
CPL Pubid: 220849

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)