CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A variational approach to complex Hessian equations in C-n

Hoang Chinh Lu (Institutionen för matematiska vetenskaper, matematik)
Journal of Mathematical Analysis and Applications (0022-247X). Vol. 431 (2015), 1, p. 228-259.
[Artikel, refereegranskad vetenskaplig]

Let Omega be an m-hyperconvex domain of C-n and beta be the standard lathier form in C-n. We introduce finite energy classes of ni,subharmonic functions of Cegrell type, epsilon(p)(m)(Omega), p > 0 and F-m(Omega). Using a variational method we show that the degenerate complex Hessian equation (ddc phi)(m) A beta(n-m) = mu has a unique solution in epsilon(1)(m)(Omega) if and only if every function in a epsilon(1)(m) is integrable with respect to mu. If has finite total mass and does not charge m-polar sets, then the equation has a unique solution in F-m (Omega). (C) 2015 Elsevier Inc. All rights reserved.

Nyckelord: Complex Hessian equations, Cegrell's class, Variational approach

Denna post skapades 2015-08-07. Senast ändrad 2017-07-03.
CPL Pubid: 220344


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur