CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Large-Eddy Simulation Study of Thermally Stratified Canopy Flow

Bastian Nebenführ (Institutionen för tillämpad mekanik, Strömningslära ; Svenskt VindkraftsTekniskt Centrum (SWPTC)) ; Lars Davidson (Institutionen för tillämpad mekanik, Strömningslära ; Svenskt VindkraftsTekniskt Centrum (SWPTC))
Boundary-Layer Meteorology (0006-8314). Vol. 156 (2015), 2, p. 253-276.
[Artikel, refereegranskad vetenskaplig]

A number of large-eddy simulations (LES) are performed for the calculation of the airflow over a horizontally homogeneous forest canopy for a wide range of thermal stability classes. For the first time, results from LES of a stably stratified canopy are also presented. Simulation results compare favourably to recent field measurements over a pine forest in south-eastern Sweden. The simple heat source model was found to perform adequately and to yield within-canopy heat-flux profiles typically observed for stable conditions in the field. Evidence was found for a layer of unstably stratified air in the canopy trunk space under stable stratification. The importance of a secondary wind-speed maximum is emphasized in stable conditions. Examination of the budget equation of turbulent kinetic energy (TKE) revealed that, during stable stratification, pressure transport plays an increasingly important role in supplying the canopy region with TKE.

Nyckelord: Atmospheric boundary layer, Forest canopy , Forest turbulence, Large-eddy simulation, Thermal stratification, Turbulent kinetic energy budget

Denna post skapades 2015-07-21. Senast ändrad 2017-10-03.
CPL Pubid: 219896


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Strömningslära (2005-2017)
Svenskt VindkraftsTekniskt Centrum (SWPTC)


Hållbar utveckling

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Turbulence-resolving simulations for engineering applications