CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Suppression of Parasitic Substrate Modes in Multilayer Integrated Circuits

Klas Eriksson (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik) ; Sten E. Gunnarsson (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik) ; Per-Åke Nilsson (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik) ; Herbert Zirath (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik)
IEEE Transactions on Electromagnetic Compatibility (0018-9375). Vol. 57 (2015), 3, p. 591-594.
[Artikel, refereegranskad vetenskaplig]

Integrated circuits (ICs) with multilayer backend process and a large front-side ground plane support the propagation of parasitic substrate modes. These modes resonate at frequencies that typically are within the bandwidth of circuits operating close to and in the submillimeter-wave range, i.e., beyond 300 GHz. The resonances cause unwanted coupling and feedback, which result in circuit instability and degraded performance for circuits operating in the range of these resonances. A common method to suppress these modes from propagating is to use numerous through-wafer vias distributed over the entire circuit. In this letter, we present a study of substrate modes in multilayer ICs with thin-film microstrip interconnects at 125-330 GHz. We show that a doped Si carrier underneath the circuit effectively eliminates the effect of substrate modes on the circuit functionality. This method requires no backside processed through-wafer vias and no backside metallization.

Nyckelord: Electromagnetic interference , integrated circuit (IC) , millimeter wave , parasitic modes , thin-film microstrip lines

Denna post skapades 2015-07-21. Senast ändrad 2017-03-21.
CPL Pubid: 219893


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik



Chalmers infrastruktur