CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Optical activity of catalytic elements of hetero-metallic nanostructures

Tomasz Antosiewicz (Institutionen för teknisk fysik, Bionanofotonik) ; S. Peter Apell (Institutionen för teknisk fysik) ; Carl Wadell (Institutionen för teknisk fysik, Kemisk fysik) ; Christoph Langhammer (Institutionen för teknisk fysik, Kemisk fysik)
10th SPIE Conference on Metamaterials; Prague; Czech Republic; 15 April 2015 through 16 April 2015 (0277-786X). Vol. 9502 (2015),
[Konferensbidrag, refereegranskat]

Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

Nyckelord: plasmonics, catalysis, transition metals, solar harvesting, plasmon-assisted photocatalysis,

Denna post skapades 2015-07-10. Senast ändrad 2017-09-14.
CPL Pubid: 219698


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)
Institutionen för teknisk fysik (1900-2015)
Institutionen för teknisk fysik, Kemisk fysik (1900-2015)



Chalmers infrastruktur