CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Modelling toroidal rotation damping in ITER due to external 3D fields

Yueqiang Liu (Institutionen för rymd- och geovetenskap, Plasmafysik och fusionsenergi) ; R. Akers ; I. T. Chapman ; Y. Gribov ; G. Z. Hao ; G. T. A. Huijsmans ; A. Kirk ; A. Loarte ; S. D. Pinches ; M. Reinke ; D. Ryan ; Y. Sun ; Z. R. Wang
Nuclear Fusion (0029-5515). Vol. 55 (2015), 6,
[Artikel, refereegranskad vetenskaplig]

The linear and quasi-linear plasma response to the n = 3 and n = 4 (n is the toroidal mode number) resonant magnetic perturbation (RMP) fields, produced by the in-vessel edge localized mode control coils, is numerically studied for an ITER 15MA H-mode baseline scenario. Both single fluid and fluid-kinetic hybrid models are used. The inclusion of drift kinetic effects does not strongly alter the plasma response compared to the fluid approximation for this ITER plasma. The full toroidal drift kinetic model is also used to compute the neoclassical toroidal viscous (NTV) torque, yielding results close to that of an analytic model based on geometric simplifications. The computed NTV torque from low-n RMP fields is generally smaller than the resonant electromagnetic torque for this ITER plasma. The linear response computations show a weak core kink response, contrary to a strong kink response often computed for plasmas from present day tokamak devices. Initial value quasi-linear simulations, including various torque models, show a localized damping of the plasma toroidal flow near the edge, as a result of the applied RMP fields. This localized rotation damping can be weak or strong depending on whether a weakly unstable edge localized peeling mode is present. No qualitative difference is found between the n = 3 and n = 4 RMP field configurations, in both the linear and non-linear response results.

Nyckelord: momentum flux, RMP fields, single fluid models, MHD-kinetic hybrid models

Denna post skapades 2015-07-10.
CPL Pubid: 219691


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Plasmafysik och fusionsenergi (2013-2017)


Fusion, plasma och rymdfysik

Chalmers infrastruktur