CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A heat trace anomaly on polygons

Rafe Mazzeo ; Julie Rowlett (Institutionen för matematiska vetenskaper, matematik)
Mathematical proceedings of the Cambridge Philosophical Society (0305-0041). Vol. 159 (2015), 2, p. 303-319.
[Artikel, refereegranskad vetenskaplig]

Let Ω0 be a polygon in $\mathbb{R}$2, or more generally a compact surface with piecewise smooth boundary and corners. Suppose that Ωε is a family of surfaces with ${\mathcal C}$∞ boundary which converges to Ω0 smoothly away from the corners, and in a precise way at the vertices to be described in the paper. Fedosov [6], Kac [8] and McKean–Singer [13] recognised that certain heat trace coefficients, in particular the coefficient of t0, are not continuous as ε ↘ 0. We describe this anomaly using renormalized heat invariants of an auxiliary smooth domain Z which models the corner formation. The result applies to both Dirichlet and Neumann boundary conditions. We also include a discussion of what one might expect in higher dimensions.

Denna post skapades 2015-07-08. Senast ändrad 2015-10-02.
CPL Pubid: 219605


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Matematisk analys

Chalmers infrastruktur