CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A new consistent discrete-velocity model for the Boltzmann equation.

Alexey Heintz (Institutionen för matematik) ; Vladislav Panferov (Institutionen för matematik)
Mathematical methods in the applied sciences (0170-4214). Vol. 25 (2002), 7, p. 571–593.
[Artikel, refereegranskad vetenskaplig]

A discrete velocity model (DVM) of the Boltzmann equation based on a suitable transformation (Carleman transform) of the velocity variables in the collision integral is introduced. The convergence of the discrete collision sums to the Boltzmann operator and convergence of solutions of the DVM to solutions of the Boltzmann equation are then proven in a three-dimensional velocity space. In the space-homogeneous case, a numerical example compares the solutions to the DVM with the exact solution of the Boltzmann equation

Nyckelord: Boltzmann equation, discrete velocity models

Denna post skapades 2015-07-06.
CPL Pubid: 219447


Institutioner (Chalmers)

Institutionen för matematik (2002-2004)


Matematisk analys

Chalmers infrastruktur