CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A logarithmic interpretation of Edixhoven's jumps for Jacobians

Dennis Eriksson (Institutionen för matematiska vetenskaper, matematik) ; L. H. Halle ; J. Nicaise
Advances in Mathematics (0001-8708). Vol. 279 (2015), p. 532-574.
[Artikel, refereegranskad vetenskaplig]

Let A be an abelian variety over a discretely valued field. Edixhoven has defined a filtration on the special fiber of the Neron model of A that measures the behavior of the Neron model under tame base change. We interpret the jumps in this filtration in terms of lattices of logarithmic differential forms in the case where A is the Jacobian of a curve C, and we give a compact explicit formula for the jumps in terms of the combinatorial reduction data of C.

Nyckelord: Neron models, Jacobians, Arithmetic curves, Logarithmic geometry

Denna post skapades 2015-06-23. Senast ändrad 2016-12-20.
CPL Pubid: 218665


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur