CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Non-Invasive Acoustical sensing of Drug-Induced Effects on the Contractile Machinery of Human Cardiomyocyte Clusters

Angelika Kunze (Institutionen för teknisk fysik, Biologisk fysik) ; D. Steel ; K. Dahlenborg ; P. Sartipy ; Sofia Svedhem (Institutionen för teknisk fysik, Biologisk fysik)
PLoS ONE (1932-6203). Vol. 10 (2015), 5, p. Art. no. e0125540.
[Artikel, refereegranskad vetenskaplig]

There is an urgent need for improved models for cardiotoxicity testing. Here we propose acoustic sensing applied to beating human cardiomyocyte clusters for non-invasive, surrogate measuring of the QT interval and other characteristics of the contractile machinery. In experiments with the acoustic method quartz crystal microbalance with dissipation monitoring (QCM-D), the shape of the recorded signals was very similar to the extracellular field potential detected in electrochemical experiments, and the expected changes of the QT interval in response to addition of conventional drugs (E-4031 or nifedipine) were observed. Additionally, changes in the dissipation signal upon addition of cytochalasin D were in good agreement with the known, corresponding shortening of the contraction-relaxation time. These findings suggest that QCM-D has great potential as a tool for cardiotoxicological screening, where effects of compounds on the cardiomyocyte contractile machinery can be detected independently of whether the extracellular field potential is altered or not.

Denna post skapades 2015-06-18. Senast ändrad 2015-07-09.
CPL Pubid: 218537


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)


Analytisk kemi
Teknisk fysik

Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Nanoparticles and their interactions at biointerfaces - medical applications and nanosafety (VR//2012-4217)