CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Spin Transition in Arrays of Gold Nanoparticles and Spin Crossover Molecules

E. J. Devid ; P. N. Martinho ; Venkata Kamalakar Mutta (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; I. Salitros ; U. Prendergast ; J. F. Dayen ; V. Meded ; T. Lemma ; R. Gonzalez-Prieto ; F. Evers ; T. E. Keyes ; M. Ruben ; B. Doudin ; S. J. van der Molen
Acs Nano (1936-0851). Vol. 9 (2015), 4, p. 4496-4507.
[Artikel, refereegranskad vetenskaplig]

We investigate if the functionality of spin crossover molecules is preserved when they are assembled into an interfacial device structure. Specifically, we prepare and investigate gold nanoparticle arrays, into which room-temperature spin crossover molecules are introduced, more precisely, [Fe(AcS-BPP)(2)](ClO4)(2), where AcS-BPP = (S)-(4-{[2,6-(dipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)ethanethioate (in short, Fe(S-BPP)(2)). We combine three complementary experiments to characterize the molecule-nanoparticle structure in detail. Temperature-dependent Raman measurements provide direct evidence for a (partial) spin transition in the Fe(S-BPP)(2)-based arrays. This transition is qualitatively confirmed by magnetization measurements. Finally, charge transport measurements on the Fe(S-BPP)(2)-gold nanoparticle devices reveal a minimum in device resistance versus temperature, R(T), curves around 260-290 K. This is in contrast to similar networks containing passive molecules only that show monotonically decreasing R(T) characteristics. Backed by density functional theory calculations on single molecular conductance values for both spin states, we propose to relate the resistance minimum in R(T) to a spin transition under the hypothesis that (1) the molecular resistance of the high spin state is larger than that of the low spin state and (2) transport in the array is governed by a percolation model.

Nyckelord: gold nanoparticles, spin crossover molecules, molecular charge transport devices, self-assembly

Denna post skapades 2015-06-12.
CPL Pubid: 218283


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik



Chalmers infrastruktur