CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

An Information-Theoretic Perspective on Coarse-Graining, Including the Transition from Micro to Macro

Kristian Lindgren (Institutionen för energi och miljö, Fysisk resursteori)
Entropy (1099-4300). Vol. 17 (2015), 5, p. 3332-3351.
[Artikel, refereegranskad vetenskaplig]

An information-theoretic perspective on coarse-graining is presented. It starts with an information characterization of configurations at the micro-level using a local information quantity that has a spatial average equal to a microscopic entropy. With a reversible micro dynamics, this entropy is conserved. In the micro-macro transition, it is shown how this local information quantity is transformed into a macroscopic entropy, as the local states are aggregated into macroscopic concentration variables. The information loss in this transition is identified, and the connection to the irreversibility of the macro dynamics and the second law of thermodynamics is discussed. This is then connected to a process of further coarse-graining towards higher characteristic length scales in the context of chemical reaction-diffusion dynamics capable of pattern formation. On these higher levels of coarse-graining, information flows across length scales and across space are defined. These flows obey a continuity equation for information, and they are connected to the thermodynamic constraints of the system, via an outflow of information from macroscopic to microscopic levels in the form of entropy production, as well as an inflow of information, from an external free energy source, if a spatial chemical pattern is to be maintained.

Nyckelord: information theory, entropy, microscopic, macroscopic, second law, reaction-diffusion, pattern formation

Denna post skapades 2015-05-19. Senast ändrad 2015-08-25.
CPL Pubid: 217214


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för energi och miljö, Fysisk resursteori


Statistisk fysik

Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

MATHEmatics of Multi-level Anticipatory Complex Systems (MATHEMACS) (EC/FP7/318723)