CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A sequential-adaptive strategy in space-time with application to consolidation of porous media

Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 288 (2015), p. 146-171.
[Artikel, refereegranskad vetenskaplig]

Issues related to space-time adaptivity for a class of nonlinear and time-dependent problems are discussed. The dG(k)-methods are adopted for the time integration, and the a posteriori error control is based on the appropriate dual problem in space-time. One key ingredient is to decouple the error generation in space and time with a hierarchical decomposition of the discrete space of dual solutions. The main idea put forward in the paper is to increase the computational efficiency of the adaptive scheme by avoiding recursive adaptations of the whole time-mesh; rather, the space-mesh and the time-step defining each finite space-time slab are defined in a truly sequential fashion. The proposed adaptive strategy is applied to the coupled consolidation problem in geomechanics involving large deformations. Its performance is investigated with the aid of a numerical example in 2D.

Nyckelord: Adaptivity, Error estimate, Finite element analysis, Porous media, ORIENTED ERROR ESTIMATION, PARABOLIC-PROBLEMS, ELASTOPLASTIC, CONSOLIDATION, FUNCTIONAL OUTPUTS, FINITE-ELEMENTS, BOUNDS, THERMOELASTICITY, COMPUTATIONS, QUANTITIES, Engineering, Multidisciplinary, Mathematics, Interdisciplinary, Applications, Mechanics, OMECHANICS, V24, P453, OMECHANICS, V3, P107

Denna post skapades 2015-05-11. Senast ändrad 2015-09-25.
CPL Pubid: 216937


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)


Teknisk mekanik

Chalmers infrastruktur