CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Tail estimation for window censored processes

Holger Rootzén (Institutionen för matematiska vetenskaper, matematisk statistik) ; Dmitrii Zholud (Institutionen för matematiska vetenskaper, matematisk statistik)
Technometrics (0040-1706). Vol. 58 (2016), 1,
[Artikel, refereegranskad vetenskaplig]

This paper develops methods to estimate the tail and full distribution of the lengths of the 0-intervals in a continuous time stationary ergodic stochastic process which takes the values 0 and 1 in alternating intervals. The setting is that each of many such 0-1 processes have been observed during a short time window. Thus the observed 0-intervals could be non-censored, right censored, left censored or doubly censored, and the lengths of 0-intervals which are ongoing at the beginning of the observation window have a length-biased distribution. We exhibit parametric conditional maximum likelihood estimators for the full distribution, develop maximum likelihood tail estimation methods based on a semi-parametric generalized Pareto model, and propose goodness of fit plots. Finite sample properties are studied by simulation, and asymptotic normality is established for the most important case. The methods are applied to estimation of the length of off-road glances in the 100-car study, a big naturalistic driving experiment. Supplementary materials that include MatLab code for the estimation routines and a simulation study are available online.

Nyckelord: Generalized Pareto distribution, Length-biased distribution, Off-road glance, Tail estimation, Traffic safety, 100-car naturalistic driving study

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-05-11. Senast ändrad 2016-11-07.
CPL Pubid: 216893


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)


Matematisk statistik

Chalmers infrastruktur