CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

An automated performance-aware approach to reliability transformations

Jacob Lidman (Institutionen för data- och informationsteknik, Datorteknik (Chalmers)) ; Sally A McKee (Institutionen för data- och informationsteknik, Datorteknik (Chalmers)) ; D.J. Quinlan ; C. Liao
Lecture Notes in Computer Science: Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part I (0302-9743). Vol. 8805 (2014), p. 523-534.
[Konferensbidrag, refereegranskat]

Soft errors are expected to increase as feature sizes shrink and the number of cores increases. Redundant execution can be used to cope with such errors. This paper deals with the problem of automatically finding the number of redundant executions needed to achieve a preset reliability threshold. Our method uses geometric programming to calculate the minimal reliability for each instruction while still ensuring that the reliability of the program satisfies a given threshold. We use this to approximate an upper bound on the number of redundant instructions. Using this, we perform a limit study to find the implications of different redundant execution schemes. In particular we notice that the overhead of higher redundancy has serious implications to reliability. We therefore create a scheme where we only perform more executions if needed. Applying the results from our optimization improves reliability by up to 58.25%. We show that it is possible to achieve up to 8% better performance than Triple Modular Redundancy (TMR). We also show cases where our approach is insufficient.

Nyckelord: Fault tolerance; High performance computing; N-Modular redundancy; Reliability optimization

Denna post skapades 2015-05-06. Senast ändrad 2016-03-22.
CPL Pubid: 216657


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för data- och informationsteknik, Datorteknik (Chalmers)


Data- och informationsvetenskap

Chalmers infrastruktur