CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamic equations for a spherical shell

Reza Okhovat (Institutionen för tillämpad mekanik, Dynamik) ; Anders Boström (Institutionen för tillämpad mekanik, Dynamik)
11th International Conference on Computational Structures Technology, CST 2012 Vol. 99 (2012),
[Konferensbidrag, refereegranskat]

Using a series expansion technique together with recursion relations the dynamic equations for an elastic spherical shell are derived. The starting point is an expansion of the displacement components into power series in the thickness direction relative the mid-surface of the shell. The three-dimensional elastodynamic equations yield recursion relations among these that can be used to eliminate all but the six of lowest order. The boundary conditions on the surfaces of the shell then give the shell equations as a power series in the thickness that can in principle be truncated to any order. The method is believed to asymptotically exact to any order. Comparisons are made with correct three-dimensional theory and other shell theories.

Nyckelord: Dynamic, Eigenfrequency, Power series, Shell equations, Spherical shell

Denna post skapades 2015-05-04.
CPL Pubid: 216347


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik


Teknisk mekanik

Chalmers infrastruktur