CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Determinant of the information matrix: a new rotation invariant optimality metric to design gradient encoding schemes

Mohammad Alipoor (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling)
12th IEEE International Symposium on Biomedical Imaging, ISBI 2015, Brooklyn, United States, 16-19 April 2015 (1945-7928). p. 462-465. (2015)
[Konferensbidrag, refereegranskat]

Minimum condition number (CN) gradient encoding scheme was introduced to diffusion MRI community more than a decade ago. It’s computation requires tedious numerical optimization which usually leads to sub-optimal solutions. The CN does not reflect any benefits in acquiring more measurements, i.e. it’s optimal value is constant for any number of measurements. Further, it is variable under rotation. In this paper we (i) propose an accurate method to compute minimum condition number scheme; and (ii) introduce determinant of the information matrix (DIM) as a new optimality metric that scales with number of measurements and does reflect what one would gain from acquiring more measurements. Theoretical analysis shows that DIM is rotation invariant. Evaluations on state-of-the-art encoding schemes proves the relevance and superiority of the proposed metric compared to condition number.

Nyckelord: Diffusion tensor imaging, Condition number, optimality metrics, determinant of information matrix

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-05-04. Senast ändrad 2016-09-22.
CPL Pubid: 216228


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)



Chalmers infrastruktur