CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Silver nanodiscs for light scattering in thin epitaxial silicon solar cells: Influence of the disc radius

O. El Daïf ; Lianming Tong (Institutionen för teknisk fysik, Bionanofotonik) ; B. Figeys ; S. Jain ; Vladimir D. Miljkovic (Institutionen för teknisk fysik, Bionanofotonik) ; V. Depauw ; D. Vercruysse ; K. Van Nieuwenhuysen ; Alexandre Dmitriev (Institutionen för teknisk fysik, Bionanofotonik) ; P. Van Dorpe ; I. Gordon ; F. Dross
2011 MRS Fall Meeting; Boston, MA; United States; 28 November 2011 through 2 December 2011 (0272-9172). Vol. 1391 (2011), p. 75-80.
[Konferensbidrag, refereegranskat]

The effect of silver nanoparticles showing localised plasmonic resonances on the efficiency of thin film silicon solar cells is studied. Silver (Ag) nanodiscs were deposited on the surface of silicon cells grown on highly doped silicon substrates, through hole-mask colloidal lithography, which is a low-cost and bottom-up technique. The cells have no back reflector in order to exclusively study the effect of the front surface on their properties. Cells with nanoparticles were compared with both bare silicon cells and cells with an antireflection coating. We optically observe a resonance showing an absorption increase controllable by the disc radius. We also see an increase in efficiency with respect to bare cells, but we see a decrease in efficiency with respect to cells with an antireflection coating due to losses at wavelengths below the plasmon resonance. As the material properties are not notably affected by the particles deposition, the loss mechanism is an important absorption in the nanoparticles. We confirm this by numerical simulations.

Denna post skapades 2015-05-04.
CPL Pubid: 216197


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)


Övrig elektroteknik, elektronik och fotonik
Teknisk fysik

Chalmers infrastruktur