CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers

Volodymyr Kuzmenko (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Olga Naboka ; Henrik Staaf (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Mohammad Mazharul Haque (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Gert Göransson ; Per Lundgren (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Paul Gatenholm (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Peter Enoksson (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Materials Chemistry and Physics (0254-0584). Vol. 160 (2015), p. 59–65.
[Artikel, refereegranskad vetenskaplig]

Carbons with valuable electrochemical characteristics are among the most convenient electrode materials used for energy storage. At the moment, their production is mostly reliant on unsustainable fossil fuels. A preferential sustainable production of enhanced carbonaceous electrodes can be achieved with more extensive utilization of abundant renewable resources instead of fossils. In this study, nitrogen-doped carbon nanofibers (CNFs) were synthesized from cellulose, the most abundant renewable resource, via consecutive steps of cellulose acetate electrospinning, subsequent deacetylation to cellulose, impregnation with nitrogen-containing additive (ammonium chloride), and carbonization. Results of material characterization showed that the carbonization of functionalized cellulose samples led to formation of CNFs doped with 4–5.6 at.% of nitrogen. In comparison with pristine CNFs N-doped samples had a slightly lower specific surface area, but higher conductivity and hydrophilicity. Moreover, electrochemical measurements indicated that the enhanced N-doped materials had about 2.5 times higher specific capacitance which was increasing throughout 1000 charge–discharge cycles. These results suggest that nitrogen doping method used in this study has a positive pseudocapacitive effect on the electrochemical performance of carbonized cellulose materials.

Nyckelord: Nanostructures; Surfaces; Electrochemical properties



Denna post skapades 2015-04-29. Senast ändrad 2015-12-17.
CPL Pubid: 215953

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)
Institutionen för kemi och molekylärbiologi (GU)
Institutionen för kemi och kemiteknik, Polymerteknologi

Ämnesområden

Energi
Materialvetenskap
Nanovetenskap och nanoteknik
Produktion
Transport
Hållbar utveckling
Materialkemi
Elektrokemi
Nanoteknik

Chalmers infrastruktur

NFL/Myfab (Nanofabrication Laboratory)