CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Numerical characterization of bump formation in the runaway electron tail

Joan Decker ; Eero Hirvijoki (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; Ola Embréus (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; Y Peysson ; Adam Stahl (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; István Pusztai (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; Tünde Fülöp (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers))
Plasma Physics and Controlled Fusion (0741-3335). Vol. 58 (2016), 2, p. 025016.
[Artikel, refereegranskad vetenskaplig]

Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham–Lorentz–Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting electron acceleration. The effect of the ALD force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker–Planck codes LUKE (Decker and Peysson 2004 Report EUR-CEA-FC-1736, Euratom-CEA), and CODE (Landreman et al 2014 Comput. Phys. Commun. 185 847). The time evolution of the distribution function is analyzed as a function of the relevant parameters: parallel electric field, background magnetic field, and effective charge. Under the action of the ALD force, we find that runaway electrons are subject to an energy limit, and that the electron distribution evolves towards a steady-state. In addition, a bump is formed in the tail of the electron distribution function if the electric field is sufficiently strong. The mechanisms leading to the bump formation and energy limit involve both the parallel and perpendicular momentum dynamics; they are described in detail. An estimate for the bump location in momentum space is derived. We observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the electron distribution into a runaway beam and a bulk population. This mechanism may give rise to beam-plasma types of instabilities that could, in turn, pump energy from runaway electrons and alter their confinement.

Nyckelord: runaway electron; Abraham-Lorentz-Dirac; synchrotron emission; kinetic instabilities; Fokker-Planck; disruptions

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-04-23. Senast ändrad 2017-03-28.
CPL Pubid: 215633


Läs direkt!

Länk till annan sajt (kan kräva inloggning)