CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamic equations for a fully anisotropic piezoelectric rectangular plate

Karl Mauritsson (Institutionen för tillämpad mekanik, Dynamik) ; Peter D. Folkow (Institutionen för tillämpad mekanik, Dynamik)
Computers & structures (0045-7949). Vol. 153 (2015), p. 112-125.
[Artikel, refereegranskad vetenskaplig]

A hierarchy of dynamic plate equations based on the three dimensional piezoelectric theory is derived for a fully anisotropic piezoelectric rectangular plate. Using power series expansions results in sets of equations that may be truncated to arbitrary order, where each order set is hyperbolic, variationally consistent and asymptotically correct (to all studied orders). Numerical examples for eigenfrequencies and plots on mode shapes, electric potential and stress distributions curves are presented for orthotropic plate structures. The results illustrate that the present approach renders benchmark solutions provided higher order truncations are used, and act as engineering plate equations using low order truncation.

Nyckelord: Piezoelectric plate, Power series, Asymptotic, Orthotropic, Eigenfrequenciy, Laminate



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-03-27. Senast ändrad 2015-06-16.
CPL Pubid: 214440

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik

Ämnesområden

Materialvetenskap
Fastkroppsmekanik

Chalmers infrastruktur