CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the variationally consistent computational homogenization of elasticity in the incompressible limit

Mikael Öhman (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Advanced Modeling and Simulation in Engineering Sciences (2213-7467). Vol. 2 (2015), 1,
[Artikel, refereegranskad vetenskaplig]

Background Computational homogenization is a well-established approach in material modeling with the purpose to account for strong micro-heterogeneity in an approximate fashion without excessive computational cost. However, the case of macroscopically incompressible response is still unresolved. Methods The computational framework for Variationally Consistent Homogenization (VCH) of (near) incompressible solids is discussed. A canonical formulation of the subscale problem, pertinent to a Representative Volume Element (RVE), is established, whereby complete macroscale incompressibility is obtained as the limit situation when all constituents are incompressible. Results Numerical results for single RVEs demonstrate the seamless character of the computational algorithm at the fully incompressible limit. Conclusions The suggested framework can seamlessly handle the transition from (macroscopically) compressible to incompressible response. The framework allows for the classical boundary conditions on the RVE as well as the generalized situation of weakly periodic boundary conditions.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-03-10. Senast ändrad 2015-06-12.
CPL Pubid: 213587


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik


Teknisk mekanik

Chalmers infrastruktur