CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Equivariant quantization of Poisson homogeneous spaces and Kostant's problem

E. Karolinsky ; Alexander Stolin (Institutionen för matematiska vetenskaper) ; V. Tarasov
Journal of Algebra (0021-8693). Vol. 409 (2014), p. 362-381.
[Artikel, refereegranskad vetenskaplig]

We find a partial solution to the longstanding problem of Kostant concerning description of the so-called locally finite endomorphisms of highest weight irreducible modules. The solution is obtained by means of its reduction to a far-reaching extension of the quantization problem. While the classical quantization problem consists in finding *product deformations of the commutative algebras of functions, we consider the case when the initial object is already a noncommutative algebra, the algebra of functions within q-calculus.

Nyckelord: Equivariant quantization, Highest weight module, Kostant's problem, Quantized universal enveloping algebra, Reduced fusion element



Denna post skapades 2015-03-06. Senast ändrad 2015-03-31.
CPL Pubid: 213468

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematik

Chalmers infrastruktur