CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

High-temperature superconducting nanowires for photon detection

Riccardo Arpaia (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; M. Ejrnaes ; L. Parlato ; F. Tafuri ; R. Cristiano ; D. Golubev ; R. Sobolewski ; Thilo Bauch (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Floriana Lombardi (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; G. P. Pepe
Physica. C, Superconductivity (0921-4534). Vol. 509 (2015), p. 16-21.
[Artikel, refereegranskad vetenskaplig]

The possible use of high-temperature superconductors (HTS) for realizing superconducting nanowire single-photon detectors is a challenging, but also promising, aim because of their ultrafast electron relaxation times and high operating temperatures. The state-of-the-art HTS nanowires with a 50-nm thickness and widths down to 130 nm have been fabricated and tested under a 1550-nm wavelength laser irradiation. Experimental results presenting both the amplitude and rise times of the photoresponse signals as a function of the normalized detector bias current, measured in a wide temperature range, are discussed. The presence of two distinct regimes in the photoresponse temperature dependence is clearly evidenced, indicating that there are two different response mechanisms responsible for the HTS photoresponse mechanisms.

Nyckelord: High-temperature superconductivity, Yttrium barium copper oxide, Pulsed-laser deposition, Nanostructures and nanowires, Optical photoresponse, Superconducting single-photon detectors



Denna post skapades 2015-03-02. Senast ändrad 2016-09-14.
CPL Pubid: 213266

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik

Ämnesområden

Fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


YBCO nanowires to study nanoscale ordering in High-Tc Superconductors