CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A robust subspace classification scheme based on empirical intersection removal and sparse approximation

Yinan Yu (Institutionen för signaler och system, Signalbehandling) ; Tomas McKelvey (Institutionen för signaler och system, Signalbehandling)
Integrated Computer-Aided Engineering (1069-2509). Vol. 22 (2015), 1, p. 59-69.
[Artikel, refereegranskad vetenskaplig]

Subspace models are widely used in many applications. By assuming an individual subspace model for each class, linear regression is applied and combined with minimum distance criteria for making the final decision. In a generalized subspace model, the full linear subspace of each class is split into subspaces with lower dimensions, and the unknown basis needs to be estimated with respect to the testing pattern using adaptively selected training samples. The training data selection is implemented using either least-squares regression or sparse approximation. In this paper, to further improve the classification performance, instead of attempting to minimize the regression error for each class, the between class separability is enhanced by a novel approach called Empirical Subspace Intersection (ESI) Removal technique. Evaluations are performed on (1) standard UCI data set, and (2) a computer aided system along with the proposed classification technique to determine the quality in wooden logs using microwave signals. The experimental results are shown and compared with classical methods.

Nyckelord: Classification, linear subspace, sparse representation, training data selection



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-02-26. Senast ändrad 2015-03-03.
CPL Pubid: 213179

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)