CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells

C. Trompoukis ; I. Abdo ; R. Cariou ; I. Cosme ; W. H. Chen ; O. Deparis ; Alexandre Dmitriev (Institutionen för teknisk fysik, Bionanofotonik) ; E. Drouard ; M. Foldyna ; E. Garcia-Caurel ; I. Gordon ; B. Heidari ; A. Herman ; L. Lalouat ; K. D. Lee ; J. Liu ; Kristof Lodewijks (Institutionen för teknisk fysik, Bionanofotonik) ; F. Mandorlo ; Ines Massiot (Institutionen för teknisk fysik, Bionanofotonik) ; A. Mayer ; Vladimir D. Miljkovic (Institutionen för teknisk fysik, Bionanofotonik) ; J. Muller ; R. Orobtchouk ; G. Poulain ; P. Prod'Homme ; P. R. I. Cabarrocas ; C. Seassal ; J. Poortmans ; R. Mertens ; O. El Daif ; V. Depauw
Physica Status Solidi applications and materials science (1862-6300). Vol. 212 (2015), 1, p. 140-155.
[Artikel, refereegranskad vetenskaplig]

We report on the fabrication, integration, and simulation, both optical and optoelectrical, of two-dimensional photonic nanostructures for advanced light trapping in thin crystalline silicon (c-Si) solar cells. The photonic nanostructures are fabricated by the combination of various lithography (nanoimprint, laser interference, and hole mask colloidal) and etching (dry plasma and wet chemical) techniques. The nanopatterning possibilities thus range from periodic to random corrugations and from inverted nanopyramids to high aspect ratio profiles. Optically, the nanopatterning results in better performance than the standard pyramid texturing, showing a more robust behavior with respect to light incidence angle. Electrically, wet etching results in higher minority carrier lifetimes compared to dry etching. From the integration of the photonic nanostructures into a micron-thin c-Si solar cell certain factors limiting the efficiencies are identified. More precisely: (a) the parasitic absorption is limiting the short circuit current, (b) the conformality of thin-film coatings on the nanopatterned surface is limiting the fill factor, and (c) the material damage from dry etching is limiting the open circuit voltage. From optical simulations, the optimal pattern parameters are identified. From optoelectrical simulations, cell design considerations are discussed, suggesting to position the junction on the opposite side of the nanopattern.

Nyckelord: light trapping, photonic crystals, photonic nanostructures, silicon, solar cells, thin films

Denna post skapades 2015-02-25. Senast ändrad 2015-03-31.
CPL Pubid: 213139


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)



Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Nanophotonics for ultra-thin crystalline silicon photovoltaics (PHOTONVOLTAICS) (EC/FP7/309127)