CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Capacity of SIMO and MISO Phase-Noise Channels with Common/Separate Oscillators

Mohammad Reza Khanzadi (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik ; Institutionen för signaler och system, Kommunikationssystem ; GigaHertz Centrum) ; Giuseppe Durisi (Institutionen för signaler och system, Kommunikationssystem) ; Thomas Eriksson (Institutionen för signaler och system, Kommunikationssystem)
IEEE Transactions on Communications (0090-6778). Vol. 63 (2015), 9, p. 3218-3231.
[Artikel, refereegranskad vetenskaplig]

In multiple antenna systems, phase noise due to instabilities of the radio-frequency (RF) oscillators, acts differently depending on whether the RF circuitries connected to each antenna are driven by separate (independent) local oscillators (SLO) or by a common local oscillator (CLO). In this paper, we investigate the high-SNR capacity of single-input multiple-output (SIMO) and multiple-output single-input (MISO) phase-noise channels for both the CLO and the SLO configurations. Our results show that the first-order term in the high-SNR capacity expansion is the same for all scenarios (SIMO/MISO and SLO/CLO), and equal to 0.5ln(SNR), where SNR stands for the signal-to-noise ratio. On the contrary, the second-order term, which we refer to as phase-noise number, turns out to be scenario-dependent. For the SIMO case, the SLO configuration provides a diversity gain, resulting in a larger phase-noise number than for the CLO configuration. For the case of Wiener phase noise, a diversity gain of at least 0.5ln(M) can be achieved, where M is the number of receive antennas. For the MISO, the CLO configuration yields a higher phase-noise number than the SLO configuration. This is because with the CLO configuration one can obtain a coherent-combining gain through maximum ratio transmission (a.k.a. conjugate beamforming). This gain is unattainable with the SLO configuration.

Nyckelord: Phase noise, channel capacity, multiple antennas, distributed oscillators, Wiener process.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-02-23. Senast ändrad 2016-02-01.
CPL Pubid: 213041


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik
Institutionen för signaler och system, Kommunikationssystem (1900-2017)
GigaHertz Centrum


Informations- och kommunikationsteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Phase Noise in Communication Systems--Modeling, Compensation, and Performance Analysis