CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

A. A. Almaqwashi ; T. Paramanathan ; Per Lincoln (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; I. Rouzina ; Fredrik Westerlund (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; M. C. Williams
Nucleic Acids Research (0305-1048). Vol. 42 (2014), 18, p. 11634-11641.
[Artikel, refereegranskad vetenskaplig]

DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Delta, Delta-[mu-bidppz-(phen)(4)Ru-2]4(+) (Delta, Delta-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Delta, Delta-P intercalation K-d is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Delta-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Delta, Delta-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-02-18. Senast ändrad 2015-11-24.
CPL Pubid: 212783


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)


Nanovetenskap och nanoteknik
Biokemi och molekylärbiologi

Chalmers infrastruktur