CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On statistical strain and stress energy bounds from homogenization and virtual testing

S. Saroukhani ; R. Vafadari ; Robin Andersson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
European Journal of Mechanics. A, Solids (0997-7538). Vol. 51 (2015), p. 77-95.
[Artikel, refereegranskad vetenskaplig]

Computational homogenization for quasistatic stress problems is considered, whereby the macroscale stress is obtained via averaging on Statistical Volume Elements (SVE:s). The variational "workhorse" for the subscale problem is derived from the presumption of weak micro-periodicity, which was proposed by Larsson et al. (2011). Continuum (visco)plasticity is adopted for the mesoscale constituents, whereby a pseudo-elastic, incremental strain energy serves as the potential for the updated stress in a given time-increment. Strict bounds on the incremental strain energy are derived from imposing Dirichlet and Neumann boundary conditions, which are defined as suitable restrictions of the proposed variational format. For this purpose, both the standard situation of complete macroscale strain control and the (less standard) situation of macroscale stress control are considered. Numerical results are obtained from "virtual testing" of SVE:s in terms of mean values and a given confidence interval, and it is shown how these properties converge with respect to the SVE-size for different prescribed macroscale deformation modes and different statistical properties of the random microstructure. In addition, the upper and lower bounds for a sequence of increasing strain levels, for a fixed SVE-size, are used as "data" for the calibration of a macroscopic elastic-plastic constitutive model.

Nyckelord: Computational homogenization, Effective properties, Virtual testing



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-02-11. Senast ändrad 2015-07-09.
CPL Pubid: 212400

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)

Ämnesområden

Materialvetenskap
Fastkroppsmekanik

Chalmers infrastruktur

 


Projekt

Denna publikation är ett resultat av följande projekt:


Virtual Material Testing - A Computational Tool for the Prediction of Macroscale Properties based on Homogenization (VR//2010-4482)