CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A symbolic approach for maximally permissive deadlock avoidance in complex resource allocation systems

Zhennan Fei (Institutionen för signaler och system, Automation) ; Spyros Reveliotis ; Knut Åkesson (Institutionen för signaler och system, Automation)
12th IFAC/IEEE Workshop on Discrete Event Systems, WODES 2104, Cachan, France, 14-16 May 2014 (1474-6670). Vol. 9 (2014), 3, p. 362-369.
[Konferensbidrag, refereegranskat]

To develop an efficient implementation of the maximally permissive deadlock avoidance policy (DAP) for complex resource allocation systems (RAS), a recent approach focuses on the identification of a set of critical states of the underlying RAS state-space, referred to as minimal boundary unsafe states. The availability of this information enables an expedient one-step-lookahead scheme that prevents the RAS from reaching outside its safe region. This paper presents a symbolic approach that provides those critical states. Furthermore, by taking advantage of certain structural properties regarding RAS safety, the presented method avoids the complete exploration of the underlying RAS state-space. Numerical experimentation demonstrates the efficiency of the approach for developing the maximally permissive DAP for complex RAS with large structure and state-spaces, and its potential advantage over similar approaches that employ more conventional representational and computational methods.

Nyckelord: Binary decision diagram, Deadlock avoidance, Discrete event system, Maximal permissiveness, Resource allocation system, Supervisory control theory

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-02-11. Senast ändrad 2016-05-13.
CPL Pubid: 212384


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Automation (2005-2017)


Robotteknik och automation

Chalmers infrastruktur