CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Low-frequency and microwave performances of laser-ablated epitaxialNa 0.5 K 0.5 NbO 3 films on high-resistivitySiO 2 /Si substrates

Saeed Abadei (Institutionen för mikroelektronik) ; Spartak Gevorgian (Institutionen för mikroelektronik och nanovetenskap) ; Alex Grishin
Journal of Applied Physics (0021-8979). Vol. 91 (2002), p. 2267.
[Artikel, refereegranskad vetenskaplig]

The dielectric properties of laser-ablated 0.5-μm-thick c-axis epitaxialNa 0.5 K 0.5 NbO 3 (NKN) films on high-resistivity (>7.7 kΩ cm) siliconSiO 2 /Si substrates are studied experimentally in the temperature interval of 30–320 K and at frequencies of 1.0 MHz–40 GHz. The films are grown by laser ablation from a stoichiometric target. For the measurements, planar 0.5-μm-thick gold electrodes (interdigital and straight slot) are photolithography defined on the top surface of NKN films. The slot width between the electrodes is 2.0 or 4.0 μm. At low frequencies(f<1.0 GHz), the structure performance is that of a typical metal–dielectric–semiconductor type, where two of this type of capacitor are connected back to back. At these frequencies, the large change in the capacitance (more than 10 times at 1.0 MHz), due to the applied dc field, is mainly due to the changes in depletion layer thickness at the surface of silicon. The associated losses are also large, tan δ>1. At microwave frequencies(f>10 GHz), the voltage dependence of the capacitance is given by the NKN film. More than a 13% capacitance change at 40 V dc bias and a Q factor of more than 15 are observed at 40 GHz, which make the structure useful for applications in electrically tunable millimeter-wave devices

Nyckelord: Capacitance, Dielectric thin films, Electrical resistivity

Denna post skapades 2015-02-09.
CPL Pubid: 212335


Institutioner (Chalmers)

Institutionen för mikroelektronik (1995-2003)
Institutionen för mikroelektronik och nanovetenskap (1900-2003)


Den kondenserade materiens fysik

Chalmers infrastruktur