CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine

I. Borodina ; K. R. Kildegaard ; N. B. Jensen ; T. H. Blicher ; J. Maury ; S. Sherstyk ; K. Schneider ; P. Lamosa ; M. J. Herrgard ; I. Rosenstand ; F. Oberg ; J. Forster ; Jens B. Nielsen (Institutionen för biologi och bioteknik, Systembiologi)
Metabolic Engineering (1096-7176). Vol. 27 (2015), p. 57-64.
[Artikel, refereegranskad vetenskaplig]

Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the objective of developing Saccharolnyces cerevisiae as an efficient cell factory for high-level production of 3HP, we identified the beta-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of beta-alanine and its subsequent conversion into 3HP using a novel beta-alanine-pyruvate aminotransferase discovered in Bacillus cereus. The final strain produced 3HP at a titer of 13.7 +/- 0.3 g L-1 with a 0.14 +/- 0.0 C-mol C-mol(-1) yield on glucose in 80 h in controlled fed-batch fermentation in mineral medium at pH 5, and this work therefore lays the basis for developing a process for biological 3HP production.

Nyckelord: Biosustainable acrylics, 3-hydroxypropionic acid, Saccharomyces cerevisiae, beta-alanine, beta-alanine-pyruvate aminotransferase

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-01-22. Senast ändrad 2017-01-17.
CPL Pubid: 211393


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för biologi och bioteknik, Systembiologi


Industriell bioteknik

Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Industrial Systems Biology of Yeast and A. oryzae (INSYSBIO) (EC/FP7/247013)