CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fast Numerical Method for 2D Initial-Boundary Value Problems for the Boltzmann Equation

Alexey Heintz (Institutionen för matematiska vetenskaper) ; Piotr Kowalczyk
Lecture Notes in Computer Science: Parallel Processing and Applied Mathematics. 10th International Conference, PPAM 2013, Warsaw, Poland, September 8-11, 2013, Revised Selected Papers, Part II Vol. 8385 (2014), p. 499-509.
[Konferensbidrag, refereegranskat]

We present a new numerical scheme for the initial-boundary value problem for the Boltzmann equation in two-dimensional physical space. It is based on a splitting procedure in which the collision equation is solved using the adaptive algorithm for the computation of the full three-dimensional Boltzmann collision operator on non-uniform velocity grids introduced in the previous paper by the authors. The computation of the collision operator is performed in parallel for every physical grid cell. For the two-dimensional transport equation we use a second order finite volume method. The numerical example showing the effectiveness of our method is given.

Nyckelord: Boltzmann equation, Numerical methods, Non-uniform grids

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-01-19. Senast ändrad 2015-02-18.
CPL Pubid: 210992


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)


Statistisk fysik
Numerisk analys

Chalmers infrastruktur