CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Propositional Architecture using Induced Representation

Stig Anton Nielsen (Institutionen för arkitektur) ; Alexandru Dancu (Institutionen för tillämpad informationsteknologi (Chalmers))
What’s the Matter? Materiality and Materialism at the Age of Computation p. 297-312. (2014)
[Konferensbidrag, refereegranskat]

The paper describes a method and an approach to using sensor data, machine-learning and pattern recognition for proposing and guiding immediate modifications to the existing built environment. The proposed method; Induced Representation, consists of a few steps which we have identified as crucial for such an approach. The steps are A: data collection from the environment, B: machine cognition, learning, prediction, and, c: proposition, visualization, and embodied representations for quick implementation. In the paper we outline the factual and theoretical basis for this approach, and we present and discuss three experiments that each deal with the steps A, B and C.

Nyckelord: Proposition, Architecture, Prediction, Induced Representation, Sensors, Sensor Fusion, Machine Learning, Cognition, Embodiment, Representation.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-01-06. Senast ändrad 2015-01-06.
CPL Pubid: 209644

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för arkitektur (2005-2017)
Institutionen för tillämpad informationsteknologi (Chalmers) (2003-2017)

Ämnesområden

Building Futures
Informations- och kommunikationsteknik
Hållbar utveckling
Arkitekturteknik
Annan samhällsbyggnadsteknik
Robotteknik och automation
Signalbehandling
Datorsystem
Inbäddad systemteknik
Interaktionsteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Mixed Substrate Computation - Sensor Based Artificial Cognition for Architectural Design and Modification