CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Enhanced Heat Spreader Based on Few-Layer Graphene Intercalated With Silane-Functionalization Molecules

Hao xue han ; Yuriy A. Kosevich ; Yong Zhang (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Yifeng Fu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Li-Lei Ye (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Sebastian Volz
IEEE 20th International Workshop on Thermal Investigation of ICs and Systems (Therminic). Greenwich, London, United Kingdom, 24-26 September 2014 p. 1-4. (2014)
[Konferensbidrag, refereegranskat]

We studied the heat-spreading enhancement of supported few-layer graphene by inserting silane-functionalization molecules between graphene sheets. We calculated the overall thermal resistance of graphene-substrate interface and the in-plane thermal conductivity of graphene sheets by equilibrium molecular dynamics simulations. We probed the spectral phonon transmission coefficient by non-equilibrium Green's function to characterize the local heat conduction through the interface. Our results show that the overal thermal resistance between the substrate graphene and the upper two-layer graphene underwent a three-fold increase by the presence of the molecules, while the local heat conduction from the hot spot to the graphene sheets through the molecules was largely intensified. Furthermore, the in-plane thermal conductivity of the few-layer graphene increased by 60% compared with the supported graphene non-bonded to the substrate through the molecules. This increase is attributed to the refrained cross-plane phonon scattering which in turn reinforces the in-plane heat conduction of the few-layer graphene. In summary, we proved that by inserting silane-functionalization molecules, the few-layer graphene becomes an ideal candidate for heat spreading by guiding heat more efficiently away from the heat source.



Denna post skapades 2015-01-05. Senast ändrad 2016-10-27.
CPL Pubid: 209630

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)

Ämnesområden

Materialteknik

Chalmers infrastruktur