CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Globally strongly convex cost functional for a coefficient inverse problem

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik) ; M. V. Klibanov
Nonlinear Analysis (1468-1218). Vol. 22 (2015), p. 272-288.
[Artikel, refereegranskad vetenskaplig]

A Carleman Weight Function (CWF) is used to construct a new cost functional for a Coefficient Inverse Problems for a hyperbolic PDE. Given a bounded set of an arbitrary size in a certain Sobolev space, one can choose the parameter of the CWF in such a way that the constructed cost functional will be strongly convex on that set. Next, convergence of the gradient method, which starts from an arbitrary point of that set, is established. Since restrictions on the size of that set are not imposed, then this is the global convergence.

Denna post skapades 2014-12-29. Senast ändrad 2016-06-27.
CPL Pubid: 209175


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur