CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering

Y. Z. Huang ; Yurui Fang (Institutionen för teknisk fysik, Bionanofotonik) ; Z. L. Zhang ; L. Zhu ; M. T. Sun
Light-Science & Applications (2047-7538). Vol. 3 (2014), p. Art. no. e199.
[Artikel, refereegranskad vetenskaplig]

Due to its amazing ability to manipulate light at the nanoscale, plasmonics has become one of the most interesting topics in the field of light-matter interaction. As a promising application of plasmonics, surface-enhanced Raman scattering (SERS) has been widely used in scientific investigations and material analysis. The large enhanced Raman signals are mainly caused by the extremely enhanced electromagnetic field that results from localized surface plasmon polaritons. Recently, a novel SERS technology called remote SERS has been reported, combining both localized surface plasmon polaritons and propagating surface plasmon polaritons (PSPPs, or called plasmonic waveguide), which may be found in prominent applications in special circumstances compared to traditional local SERS. In this article, we review the mechanism of remote SERS and its development since it was first reported in 2009. Various remote metal systems based on plasmonic waveguides, such as nanoparticle-nanowire systems, single nanowire systems, crossed nanowire systems and nanowire dimer systems, are introduced, and recent novel applications, such as sensors, plasmon-driven surface-catalyzed reactions and Raman optical activity, are also presented. Furthermore, studies of remote SERS in dielectric and organic systems based on dielectric waveguides remind us that this useful technology has additional, tremendous application prospects that have not been realized in metal systems.

Nyckelord: nanowire, plasmonic waveguide, remote-excitation, surface-enhanced Raman scattering



Denna post skapades 2014-12-29.
CPL Pubid: 209152

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)

Ämnesområden

Nanoteknik

Chalmers infrastruktur